NASA-CR-196883

Semi-Automatic Development of
Payload Operations Control Center
Software

Contract Number NASS5-31500
Task 28-11600

Prepared For:

Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

October 31, 1988

CTA INCORPORATED
14900 Sweitzer Lane, Suite 201
Laurel, MD 20707
(301)369-2400

(NASA-CR-~196883) SEMI-AUTQOMATIC

N95~
DEVELOPMENT (QF PAYLOAD OPERATIONS STHIAT
CONTROL CENTER SOFTWARE (Computer

Technology Associates) 31 P Unclas

G3/61 0023654



TABLE OF CONTENTS

Section

LIST OF TABLES
LIST OF FIGURES
LIST OF ACRONYMS
1 INTRODUCTION
1.1 Outline
2 SUMMARY OF DOMAIN ANALYSIS
Scope of the Analysis

esults of the Analysis

2.1
2.2 R
2.3 Obstacles to Reuse

2.3.1 Mission-Specific Requirements

2.3.2 Obsolesence of Host Systems and External Interfaces

2.3.3 Increasing Complexity

3 TECHNICAL APPROACH TO SEMI-AUTOMATIC DEVELOPMENT

3.1 Dialog-based Specification

3.2 Navigation and Selection of Reusable Components

3.3 Domain-Specific Very-High-Level Language
3.4 Graphical Programming

4 THE NEXT PHASE: DEMONSTRATING SEMI-AUTOMATIC

DEVELOPMENT
REFERENCES

Page

ii



Table

2-1
2-2

2-3
2-4

LIST OF TABLES

POCC Software Development Requires a Combination of
Constructive and Generative Techniques

Variations Across APs can be Classified into Six Types

POCC APs Typically Contain a Small Number of Standard
Subsystems

Specific Variations Suggest Avenues for Increasing Reuse

Increasing Complexity Leads to Layering in the Evolution of
Telemetery Subsystems

The Reuse Database will Contain Common Components
of POCC APs

ii

Page
1-2
2-3

2-4
2-5

2-11

34



Figure

2-1

2-2

3-1

3-2

4-1

LIST OF FIGURES

ODB Schema and Access Routine Source Code are Generated
from a Single Specification

Mission-Specific Database Access Routines may be Called by
Reusable Components

Object and Dataflow Diagrams may Reference Reusable Components

Relationships in the Reuse Database Determine how Components
should be Integrated

Pre-Spec Semantics are Determined by a Pre-Spec Language
Support Package

Four Automation Techniques Combine to Support POCC
Software Development

Page

2-7

2-13

3-3

3-6

4-2



CAP
COBE

CMS
DE
DOCS
ERBS
FDF
GMT
GRO
VO
ISEE

MODLAN
MSOCC
NASCOM
NCC
OOD
OBC
ODB
ODN
POCC
PDS

SRS
STARS
STDN
STOL
TAC
TDRSS

LIST OF ACRONYMS

Application Processor

Command Acceptance Pattern

Cosmic Background Explorer

Customer Data Operations System
Command Management System

Dynamic Explorer

Data Operations Control System

Earth Radiation Budget Satellite

Flight Dynamics Facility

Greenwich Mean Time

Gamma Ray Observatory

Input/Output

International Sun/Earth Explorer
MSOCC Applications Executive

Mission Operations Division Local Area Network
Multi-Satellite Operations Control Center
NASA Communications Network
Network Communications Center
Object-Oriented Design

On-board Computer

Operational Database

Operations Data Network

Payload Operations Control Center
Program Design Specification

Software Requirements Specification
Software Technology for Adaptible, Reliable Systems
Space Tracking and Data Network
Standard Test and Operations Language
Telemetry and Command

Tracking and Data Relay Satellite System
Telemetry Users Table

Very High Level Language

iv



1 INTRODUCTION

This report summarizes the current status of CTA’s investigation of methods and
tools for automating the software development process in NASA Goddard Space Flight
Center, Code 500 (see references [1], (2], and [3] for background). The emphasis in this
effort has been on methods and tools in support of software reuse. The most recent phase
of the effort has been a domain analysis of Payload Operations Control Center (POCC)
software. This report summarizes the results of the domain analysis, and proposes an
approach to semi-automatic development of POCC Application Processor (AP) software
based on these results.

The domain analysis enabled us to abstract, from specific systems, the typical
components of a POCC AP. We were also able to identify patterns in the way one AP
might be different from another. These two perspectives--aspects that tend to change
from AP to AP, and aspects that tend to remain the same--suggest an overall approach to
the reuse of POCC AP software.

We found that different parts of an AP require different development
technologies. We propose a hybrid approach that combines constructive and generarive
technologies. Constructive methods emphasize the assembly of pre-defined reusable
components. Generative methods provide for automated generation of software from
specifications in a very-high-level language (VHLL). Table 1-1 presents the relevant
technologies. In the next phase of our effort, we propose to demonstrate how these
technologies can be combined to facilitate AP development.

1.1 Outline

Section Two presents the results of the domain analysis in terms of the stable and
variable properties of AP software. Based on these properties, we identify three principal
obstacles to reuse: 1) mission-specific requirements, 2) obsolesence of hosts and external
interfaces, and 3) increasing complexity of requirements. We propose a technical
approach to overcoming each of these obstacles. :

Section Three describes the proposed technical approach in more detail. We
describe how we would enrich the prototype Software Reuse Environment [4] to include
the reusable components identified during the domain analysis. We also describe a
possible scenario of semi-automatic development of an AP, illustrating how the proposed
technologies would work together to support system develog:ment. The scenario may be
considered as a refinement of our operational concept of software reuse, which was
developed in an earlier phase of this effort [5].

In Section Four we summarize our concept of semi-automatic development, and
outline the objectives for the next phase of this effort.

1-1



Table 1-1: POCC Software Development Requires a Combination of Constructive
and Generative Techniques

Constructive techniques:

o Dialog-based specification: Automated assembly of components, based on
question-and-answer interaction with the developer. Suitable for configuring
the top level of an AP.

o Interactive selection of components: Navigation of available components in
the Reuse Database. Suitable for configuring standard interfaces (such as

Operator Input/Output) and for selecting standard processing functions (such as
Telemetry processing)

Generative techniques:

0 Domain-specific Very-High-Level Language (VHLL). Suitable for generating
the AP database together with those components that access the database

o Graphical programming: automated source code generation from diagrams.
Suitable for assembling new combinations of interactively selected
components.



2 SUMMARY OF DOMAIN ANALYSIS

2.1 Scope of the Analysis

We examined the requirements specifications of seven systems developed for the
Multi-Satellite Operations Control Center MSOCC):

o Standard Software

o Dynamic Explorer (DE)

o Intermational Sun/Earth Explorer (ISEE)
o Earth Radiation Budget Satellite (ERBS)
o MSOCC Applications Executive (MAE)
o Gamma Ray Observatory (GRO)

o Cosmic Background Explorer (COBE)

Standard Software and MAE are both baselines for POCC APs. The APs for specific
missions are built by adding to, modifying, and/or replacing parts of the baseline
software. DE, ISEE, and ERBS are based upon Standard Software, while GRO and
COBE are based upon MAE.

We chose these systems because 1) both Standard Software and MAE are based
on analyses of the reusable aspects of POCC APs, and 2) the APs that have been built on
these baselines provide lessons about what can, and what cannot, be reused. Including
Standard Software and MAE enabled us to take advantage of the analyses that went into
these systems. Including APs that are built on each of the baselines enabled us to
evaluate the success of the attempted reuse.

We restricted our study to high-level specifications of these systems (references
[6] through [12]). We used the Software Requirements Specifications (SRSs) of ERBS,
MAE, COBE, and GRO, the Final Report of Standard Software, and the Program Design
Specifications (PDSs) of ISEE and DE. The emphasis on high-level documentation was
in part due to limitations of available resources for the project, but there are also intrinsic
justifications for the restriction. To understand a domain, we must first and foremost
understand the requirements. We cannot expect to identify all possible areas of reuse
without understanding the requirements, because similar requirements may be realized by
apparently dissimilar software designs and implementations.

Concentrating on requirements has, in addition, forced us to examine high-level
components. In recommending steps toward automating software development in Code
500, we predicted that the greatest leverage would come from reuse of high-level
components. Our advocacy of object-oriented design (OOD) was based, in part, on the
fact that OOD facilitates reuse of high-level components by establishing unambiguous
interfaces and control relationships [3]. While the subsystems of all the APs we studied
are similar in name and overall function, reusing any of them individually would be
difficult because the interfaces are not formulated in object-oriented terms. We expect



the benefit of OOD to become apparent when we develop an object-oriented interface to
cach of the standard subsystems of a POCC AP.

2.2 Results of the Analysis

The similarities and differences between the systems we studied are documented
in Section Three of reference [13]. Table 2-1 classifies the variations we found into six
types. Identifying these types of variation enabled us to identify the obstacles to reuse,
and to develop approaches to overcoming each obstacle.

We found that POCC APs are typically composed of the subsystems shown in
Table 2-2. The overall function of each subsystem is fairly constant across APs. As
illustrated in Table 2-3a, however, the exact partition into subsystems may vary across
APs.

At the level immediately below subsystems, we find some components that are
optional but stable. These components may or may not be present in an AP. When they
are present, however, they are likely to require only minimal, if any, tailoring for the
specific mission. Table 2-3b lists some of the components in this category.

A slightly different category consists of components that are not optional, but for
which a range of stable options exists. Every AP, for example, must contain an operator
interface through which directives can be entered. The Standard Test and Operations
Language (STsL) interpreter is a standard solution to this requirement, but it is not the
only possible solution. Future APs may employ operator interfaces based on modern
graphics hardware. Table 2-3c contains some other examples in this category.

The internal functions and structures of some of the subsystems are more difficult
to classify. We found variations in the specific functions performed by a subsystem, in
the way these functions are ordered, and in the granularity with which low-level
functions are grouped into higher-level functions. Telemetry subsystems, for example,
all contain certain standard functions, such as limit checking, stripping of data, and
retrieval of Onboard Computer (OBC) dumps. The details of how these functions are
performed, however, are tied to the specific mission.

Many of these differences are reflected in the schema of the AP database.
Database fields define the limits to be checked, the time intervals at which data are to be
sampled, and other parameters of telemetry processing (as well as of command, display,
and STOL processing). These fields are treated parametrically within a mission, but
apparently not across missions. Parameterization across missions represents one strategy
that could be employed to increase reuse of POCC AP software. A technical approach to

such parameterization is proposed in Section 2.3.1.

Some functions, such as scientific processing in the Telemetry subsystem, will
necessarily be unique to a mission. Even these, however, will reuse certain standard low-
level functions. In the case of scientific processing, a library of standard mathematical
functions wil})ggically be used. Our perception is that this level of reuse is already
occurring in C AP development. Further progress towards automating development
can be achieved through tools that facilitate the composition of low-level reusable
functions into mission-specific higher-level functions. Section 2.3.3 describes one
possible approach.



Table 2-1: Variations Across APs can be Classified into Six Types

o External interfaces

o Devices supported

o Data definitions

o Processing performed
o Placement of functions

o Leveling

2-3



Table 2.2: POCC APs Typically Contain A Small Number of Standard Subsystems

o External Interface: provides interfaces to external networks (such as
NASCOM and MODLAN), systems (such as CMS), and devices (such as
terminals and output devices)

o Network Communications Center (NCC) Interface: coordinates status
information with the NCC

o Operator Inpur: interprets operator commands, for example in the Standard
Test and Operations Language (STOL), and invokes the appropriate processes

o Display: formats output to the operator

o Command: ensures transmission of commands from CMS to the spacecraft,
and monitors response

o Telemerry: performs engineering and scientific processing of data received
from spacecraft

o Database: provides application-specific definitions such as telemetry fields,
display formats, operator directives, etc.

o History: provides archiving and playback of telemetry data

o Offline: provides reporting and other offline functions

2-4



Table 2-3: Specific Variations Suggest Avenues for Increasing Reuse

a) Decomposition into Sybsystems Varies Across APs:

o Some APs group the Database, History, and Offline processing into one
subsystem.

o Some APs group just History and Offline processing into one subsystem, and
keep Database as a distinct subsystem.

o External interfaces may or may not be grouped together into a single
subsystem.

o In APs of the future we may expect the Operator Input and Display subsystems
to be unified into a single subsystem.
b) Some High-Level Components are Optional but Stable:
o TAC Interface
o MODLAN Interface
o GMT Interface
o Operational Data Network Interface
o External Simulator
c) Some Requirements may be Met by a Range of Stable Options:
o Alternative display devices
0 Alternative database management systems
o TRDRSS vs. STDN satellite links



2.3 Obstacles to Reuse
We identified the following potential technical obstacles to reuse:
o Mission-specific requirements
o Obsolesence of host systems and external interfaces
o Increasing complexity of system requirements

In the following subsections, we discuss how each obstacle is manifested in the systems
we studied. We propose a technical approach to overcoming or avoiding each obstacle.

2.3.1 Mission-Specific Requirements

Mission-specific requirements are the most obvious obstacle to reuse. They are
addressed differently in Standard Software and MAE. The Standard Software
documentation identifies those software components on which mission-specific
requirements are likely to have an impact. For each such component, the Standard
Software documentation describes how the necessary changes could be effected (see [6],
Section 7).

The developers of MAE decided to concentrate on those subsystems of an AP that
are most likely to be reusable. A concept of layering was introduced to enable the
selective use of MAE software. The layering concept is not presented in the MAE SRS,
but some form of layering is implicit in the fact that the Telemetry, Command, and
Display subsystems are not specified for MAE. These subsystems are assumed to be
application-specific. We can infer additional layering from the manner in which MAE
has been used by GRO and COBE. For example, COBE bypasses the MAE External
Interface Subsystem in order to interface directly with various I/O devices and external
systems.

MAE is an approximation to the idea of a domain model, insofar as it identifies
parts that are likely to be reusable. The MAE SRS does not, however, systematically
address the topic of adapting or tailoring the baseline software. Mechanisms for
adaptation or tailoring may help to reduce the amount of software that is redeveloped
with each new mission.

Our analysis points to one major area in which tailoring mechanisms could have a
significant impact. This is the interface between the Operational Database (ODB) and
the other subsystems of an AP. Command, telemetry, and display processing are largely
(although not entirely) driven by parameters and definitions in the ODB. In current
practice, generation of the ODB and development of the telemetry, command, and
display software are separate activities. One disadvantage of this approach is the
possibility of inconsistency between the ODB and the processing software. Another
disadvantage is that the processing software must be redeveloped for each new
application.

Recommended solution. Automated source code generation techniques can be applied to
ensure consistency between the ODB and related software. A single specification in a
very-high-level language (VHLL) could be used to define the ODB. As shown in Figure
2-1, the specification would be transformed into two outputs:



Ada

Procedures
to Access
ODB N
\_——/
Run-time
VHLL Access
Specification
of
ODB ODB
Generation
ODB Schema Generation
Scripts

Figure 2-1: ODB Schema and Access Routine Source Code
are Generated from a Single Specification



o Database generation scripts
o Source code for database access routines

The database generation scripts would create the tables required by the command,
telemetry, and display subsystems. The generated source code would provide access to
these tables, including individual fields within each table. In current practice, these
routines are manually coded for each mission. Generating the source code automatically
will eliminate one major area of redevelopment.

The command, telemetry, and display subsystems would issue calls to the
database access routines, which have been generated automatically. These calls would
most likely take the form of generic procedure calls, i.e., the automatically generated
access routines would be passed as generic parameters to any reusable command,
telemetry, and display components that require database access. This approach
effectively decouples the database definition from the development of reusable
command, telemetry, and display components. The approach we propose is illustrated in
Figure 2-2.

2.3.2 Obsolesence of Host Systems and External Interfaces

Standard Software was developed to be used in multiple missions. Five classes of
potential mission-specific modifications were identified, and likely areas of modification
in each subsystem of the software were documented in detail. Nevertheless, Standard
Software was eventually superceded by MAE. Substantial modification occurred even in
those systems that are based on Standard Software (see, for example, the DE Design
Specification [2], Section One).

The development of MAE seems to have been necessitated, at least in part, by the
obsolescence of the PDP-11 host of the Standard Software system. Standard Software
was also superceded in the area of external interfaces. New MSOCC APs must interface
with devices (e.g., display devices), networks (e.g., MODLAN), and systems (e.g.,
Shuttle and TDRSS) that were not present in earlier missions.

We expect that, in the near future, the device-dependent assumptions of MAE will
also be superceded. MAE is hosted by Perkin-Elmer super-minicomputers, which
replace the PDP-11s of previous MSOCC APs. The new hosts may remain adequate for
several years. The operator interfaces of MAE, however, are based on older technology
and may already be considered outdated. We predict that the use of the text-oriented
STOL, with text-oriented terminal and strip-chart output, will soon be replaced by
modern graphical input/output techniques using windows, menus, icons, mouses, etc.,
and the associated graphical monitors. Other hardware technology developments are
likely to impact POCCs, especially within the planned CDOS architecture which
distributes control among customer sites.

Recommended solution. The use of Ada and other standards, such as the X-Window
System, may reduce some of the impact of host and device obsolesence. Object-oriented
design will also help by localizing host and device dependencies. Such localization is,
however, already visible in the systems we studied. The real significance of QOD is that
the interfaces between components are service-based. Such interfaces permit the
separation of service definitions from service implementations. This, in turn, enables the
developer to change an implementation without changing the interface. An imporrant

2-8



VHLL Ada /——-—\
Specificain MG mmmme] Prociuns e Rimime C >
ODB Generation ODB
Passed as
Generic > oDB
Parameters \
-~ T Run-time
Procedure
TReunble
lemetry,
Reuse > C:mmnnd:
Database Display
Components

Figure 2-2: Mission-Specific Database Access Routines
may be Called by Reusable Components



part of our consinued effort will be to develop object-oriented interface definitions for the
standard components of a POCC AP.

2.3.3 Increasing Complexity

As functional requirements become more and more demanding, software becomes
more and more complex. The addition of new functions to existing components leads,
eventually, to components that are foo complex. The response of software analysts and
designers is to introduce new functional layers. By distributing functions over the
increased number of layers, designers are able to reduce the level of complexity at any
given layer.

We can see this pattern in the evolution of MSOCC telemetry subsystems, which
is illustrated in Table 2-4. The telemetry subsystem of ISEE, whose PDS is dated 1980,
contains only a few of the functions found in later APs. The complexity increases in DE,
whose PDS is dated 1982. In ERBS (1984) and COBE (1986) we can see some grouping
of functions that appear at the top level in DE. For example, internal simulation is
handled by three top-level functions in ISEE, and by a single top-level function in ERBS
and COBE. Input of telemetry in ISEE involves not only the incoming block handler but
also the RSX-11 driver and the scheduler. ERBS and COBE manifest comparable
complexity in the top level of their telemetry subsystems. In the GRO SRS, which also
dates from 1986, we see a significantly simpler level-0 diagram for the telemetry
subsystem. When we turn to the lower-level diagrams in the GRO SRS, we see many of
the functions that appear in COBE at the top level (for example, extraction of minor
frames, decommutation, and limit sensing).

While the level-0 diagrams for telemetry in GRO and COBE look very different,
many of the same functions are performed in both systems. The problem, therefore, is to
enable developers to capitalize on the commonality of functions, while using them in
dissimilar designs.

Recommended solution. Evolving complexity poses an especially difficult problem for
reuse because it is impossible to predict the manner in which complexity will evolve.
Rather than build into the development environment an expected evolution of POCC
APs, which is almost guaranteed to be wrong, we propose to provide mechanisms for
handling evolving complexity.

The combination of object-oriented design and functional decomposition, and the
graphical representations that are used to express these concepts, provide powerful
methods for defining new layers of abstraction. We require techniques that facilitate
implementing these new layers without sacrificing reuse of existing components.

We propose an approach based on graphical programming, i.e., generation of
source code directly from diagrams. A combined hierarchy of Object Diagrams and
Dataflow Diagrams may be used to define new layers of packages and functions. As
shown in Figure 2-3, whenever a specified capability matches a component that already
exists, the diagram can reference that component as an alternative to further
decomposition. In this way, diagrams would be used to piece together existing
components in new combinations. Source code generated from the diagrams would
reference the reused components. The higher-level components developed in this manner
may themselves, after suitable refinement, be added to the Reuse Database.

2-10



Table 2-4: Increasing Complexity Leads to Layering in the Evolution of Telemetry
Subsystems
(Page 1 of 2)

ISEE-C Top-Level Telemetry Functions:

o System Initializer

o Telemetry Input Block Handler
o TUT Generator

o Extract Subcommutated Data

o Attitude Output

o Simulator Initialization

DE Top-Level Telemetry Functions:

o System Initializer

o Map Initializer

o TUT Initializer

o RSX-11 Input Driver

o Input Block Handler

o TUT Generator

o Telemetry Minor Frame Extractor
o Analog Limit Check

o Scheduler

o Spacecraft Configuration Monitor
o Equation Processors

o Limits Enable/Disable

o Telemetry Conversion Enable/Disable
o Dump Processing

o Maximum/Minimum Processor

o Simulator Initializer

o Simulator File Setup

o Internal Simulator

ERBS Top-Level Telemetry Functions:

o Establish System Initialization
o Map Initialization

o Distribute Blocks

o Process Telemetry

o Write History Tape

o Interval Data Archival

o Quick-Look Experiments

o Equation Processors

o Check Analog Limits

o Monitor Spacecraft Configuration
o Internal Simulator

2-11



Table 2-4: Increasing Complexity Leads to Layering in the Evolution of Telemetry
Subsystems
(Page 2 of 2)

COBE Top-Level Telemetry Functions:

o Configure Telemetry System

o Route NASCOM Blocks

o Strip Minor Frames

o Decommutate Frames

o Limit Check Data

o Process Equations

o Monitor Spacecraft Configuration

o Accumulate Interval Archival Data
o Extract Quick-Look Data

o Fabricate Telemetry Block Internally

GRO Top-Level Telemetry Functions:

o Process NASCOM Telemetry Blocks
o Process Real-Time Telemetry

o Process OBC Dumps '

o Process Periodic Telemetry Functions
o Process CAPS

GRO Process Real-Time Telemetry Subfunctions (Level 1):

o Extract Minor Frames

o Decommutate Telemetry Parameters

o Perform Decommutation Special Processing
o Perform Limit Sensing

o Perform Delta Limit Sensing

2.12



Telemetry Subsystem

Reuses
Task
Ingest
Blocks Reuses
ocks \ Procedure
\ Decom

|
|
|
1
|
|
|
I
|
|
!
!

Reusable

Telemetry,
Database Display
Components

Figure 2-3: Object and Dataflow Diagrams may Reference Reusable Components



This approach would be especially suitable for handling evolving complexity in
telemetry processing. In the systems we studied, the dataflow diagrams for telemetry
reveal an overall paradigm of pipeline processing. As the telemetry stream is read in,
each element is passed to a series of maps, filters, state machines, etc., with possible
splitting and merging of streams at any point in the pipeline. Under the Department of
Defence STARS program, CTA has already developed a tool that takes, as input, a
description of such a pipeline together with the functions to be performed at each step,
and generates, as output, Ada source code that implements the pipeline [14]. This is an
example of the kind of generative technology that could be employed.

2-14



3 TECHNICAL APPROACH TO SEMI-AUTOMATIC DEVELOPMENT

The reusability analysis in Section Two suggests that we can effectively combine
four techniques for semi-automatic development of POCC software:

o Dialog-based specification

o Navigation of the Reuse Database

o Domain-specific Very-High-Level Language (VHLL)
o Graphical programming

3.1 Dialog-based Specification

Some of the high-level differences between APs were identified in Table 2-3a.
These variations do not appear to offer any major problems for reuse: they are few in
number and easily defined, and can be presented simply as alternatives to the developer.

In the scenario we envision, the developer would begin by choosing a top-level
architecture for the system. The developer knows that a POCC AP contains certain
standard subsystems, but the exact arrangement of these subsystems is open for analysis
since in the past different missions have done things differently. The devel wants to
know what options have been chosen in the past, and what rationales led to those
decisions. He can then compare the rationales with the current requirements, and make a
decision accordingly.

We envision the environment presenting the developer with questions that
represent the alternatives. For example:

Functions:

NCC Interface Required?
Command Verification Performed?
External Simulation Performed?
Expert Systems Required?

Levelling:

Combined External Interface Subsystem?
Combined Operator I'O Subsystem?
Combined Database, History, and Offline Processing?

Placement:
Initialization performed where?
Database(s) distributed throughout other subsystems?
Expert Systems distributed over Operator Positions?

If the developer needs clarification of any of these questions, the environment can
present the alternatives that are available in the Reuse Database. Once the dialog is



complete, the environment would retrieve the necessary subsystems and components and
would synthesize the top-levels of the AP

As long as the options are relatively few, the environment need not have an
explicit rule-base in order to conduct and interpret the dialog. Greater flexibility could,
however, be achieved by providing a rule-base and inference engine. Such rules could,
for example, determine how various options are interrelated. They might also determine
restrictions or necessary steps to be taken when integrating subsystems under various
conditions.

In the absence of a rule base, the rules for integrating subsystems could be
deduced from the relationships present in the Reuse Database, as illustrated in Figure 3-1.
Object-oriented interfaces are essential for this approach to work. The data flow model,
which was used in the majority of the SRSs that we examined, does not provide sufficient
information to enable a developer even to consider reuse at the subsystem level. For
example, the data flow model does not describe the conditions under which data flows
between subsystems occur, nor does it describe the control relationships between
subsystems. The decision to reuse a subsystem must, therefore, be based upon an
analysis of lower-level documentation, e.g., lower-level dataflow diagrams, and interface
control documents. An object-oriented definition of subsystem interfaces would alleviate
this problem by providing the necessary information at the highest level of
documentation. The information could initially be provided in the form of Object
Diagrams. The relationships documented in these diagrams (*‘uses,’’ *‘provides,’’ etc.)
would then be incorporated in the Reuse Database. The information required for reuse of
a subsystem would then be available to the environment’s dialog interpreter.

3.2 Navigation of the Reuse Database

Having chosen a top-level architecture, the developer proceeds to decompose
each subsystem. He locates each subsystem as a category (i.c., keyword) in the Reuse
Database. Starting from each subsystem name, the developer locates the possible
components of the subsystem by navigating down the relationship *‘contains.’’

For stable components, the Reuse Database provides a convenient form in which
to represent the range of options. The developer can navigate over the available options
and select those that are needed. For example, a developer who is familiar with STOL
might learn about the existence of alternative operator interfaces approaches by
navigating through the options. Table 3-1 illustrates some of the components that the
Reuse Database would contain.

3.3 Domain-Specific Very-High-Level Language

Many of the mission-specific properties of an AP are reflected in the schema of
the AP database. As described in Section 2.3.1, a significant amount of redevelopment
can be avoided by automatically generating database interface source code at the same
time that the schema is generated.

Transformation of domain-specific VHLL specifications into ordinary source
code is a reasonably mature discipline. The approach we recommend is based on the
“‘pre-spec’’ method developed by CTA for NASA under another program. A pre-spec is
a program, written in Ada, that is used to specify a systen at a very high level of
abstraction. Ada is, in effect, used as the VHLL. Compilation of the pre-spec results not

3-2



Operator

STOL

Telemetry Display Command
External
NCC UF CMS
Output
TAC Devices

Figure 3-1: Relationships in the Reuse Database
Determine how Components should be Integrated




Table 3-1: The Reuse Database will Contain Common Components of POCC APs

o POCC Subsystems:

External interface
Operator
Telemetry
Command
Database

o External interfaces

MODLAN
ODN
DOCS
FDF

CMS

TAC

o Operator interfaces

STOL

Terminal

Strip Chart Recorder
Graphical display

o Telemetry functions

Strip minor frames
Decommutate telemetry data
Extract data (various types)
Limit sensing

Dump Image maintenance
Quick-look processing

Equation processing

Monitor spacecraft configuration
Internal simulation

Interval data archival

o Command functions

Transmit command
Verify receipt

3-4



in the desired program, but rather in a code generator. Execution of this code generator
results in the desired program.

As shown in Figure 3-2, this method works by hiding the details of code
generation in & support package, which is brought in when the pre-spec is compiled. The
support package serves as the definition of the VHLL. The principal advantage of the
pre-spec method over other VHLL methodologies is that domain-specific languages can
be created and refined, without introducing an ever expanding set of language constructs.
By using Ada as the VHLL we provide the flexibility to tailor the VHLL to an
application, while retaining a familiar syntax. The pre-spec method has been applied in a
variety of domains, including the database domain which is where we propose to apply it.

3.4 Graphical Programming

In Section 2.3.3 we identified the problem of evolving complexity, and we
proposed graphical programming as a means of handling this problem. Graphical
programming would provide a simple means of combining reusable components into
new, higher-level components. We propose to generate Ada source code from a
combination of Object Diagrams and and variant of Dataflow Diagrams. Object
Diagrams would be used to combine or integrate reusable packages. Dataflow Diagrams
would be used to integrate reusable functions and procedures.

CTA has developed, under its internal research and development program, a code
generation tool that converts a hierarchy of Object Diagrams into Ada package
specifications and skeletal package bodies. This program is now addressing the
automatic generation of procedure bodies from a variant of Dataflow Diagrams, which
we call Functional Diagrams. Functional Diagrams are a graphical idiom for expressing
processing logic without side effects. The side-effect-free programming discipline
results in code that is more easily demonstrated to be correct, and that is easier to
maintain than code that contains side effects. The tool now being developed by CTA
could be used in a demonstration of the overall approach to semi-automatic development
of POCC software.

3-5



r=--

VHLL
Pra-apes e o, w
Softwere

Code Generstion
Definitions and
Procadures

- e e e e = Py

Package

Figwe 3-Z Pro-Spes Semantics sre Determined by a Pre-Spec Language
Support Package

s




4 THE NEXT PHASE: DEMONSTRATING SEMI-AUTOMATIC
DEVELOPMENT

We have identified the principal technical obtacles to reuse of POCC AP
software, and we have described four development technologies that can help to
overcome these problems. We recommend synthesizing a prototype software
development environment that demonstrates how these technologies would work
together. Figure 4-1 illustrates the integrated concept.

The purpose of such an effort would be to demonstrate the capability to
synthesize a POCC AP rapidly. One aspect of the effort would consist of enhancing the
current Software Reuse Environment [4] with tools that support dialog-based
specification, the domain-specific VHLL, and graphical programming. Another part of
the effort, which is at least as important, would consist of developing object-oriented
specifications for reusable POCC AP components. The latter process might be called
‘‘domain synthesis.”’ It is the natural continuation of our study of reusability in the
POCC AP domain.

The objective of the next phase is rapid synthesis or ‘‘semi-automatic
development’’ of POCC APs. Significant human intelligence will still be required in the
development process, i.c., in the database definition process, in the graphical
programming process, and probably in tailoring reusable components to application-
specific requirements. The goal is not so much to automate as to raise the level of
abstraction at which developers must think. The effort is analogous, in this respect, to the
development of compilers for high-level languages such as FORTRAN and Ada--with
the significant difference that we focus on a single application domain. This focus will
enable us to take advantage of specification, design, and implementation conventions that
cannot be assumed in the general case.

4-1



High-level of Migh-level Decisions

Functions Required?
Levelling?

New Cdﬂ'ﬂﬂlm Ptacement?

] Standard

Reussble Components T Subsysiems __

Autometed Generstion
ol 8 Configuration

User e———  Navigation and

Figure 4-1: Four Automation Techniques Combine to Support
POCC Software Development




(1]

(2]

(3]

(4]

(5]

(61

(7

(8

[9]

(10]

[11]

(12]

(13]

REFERENCES

Bailin, S., Dillencourt, M, Heyliger, G. Automation in Software Development
Environments. Prepared for NASA Goddard Space Flight Center. Computer
Technology Associates, Inc. May 16, 1986.

Bailin, S. Scenarios of Software Development in Code 500. Prepared for NASA
Goddard Space Flight Center. Computer Technology Associates, Inc. January

12, 1987. '

Bailin, S., Moore, J., Rogerson, A. Towards Automated Software Development in
Code 500: Short and Long Term Recommendations. Prepared for NASA
Godd;;d Space Flight Center. Computer Technology Associates, Inc. January
30, 1987.

Bailin, S. Sofrware Reuse Environment User's Manual. Prepared for NASA
Goddard Space Flight Center. Computer Technology Associates, Inc. March 30,
1988.

Bailin, S. C. and Moore, J. M. An Operational Concept of Software Reuse.
Prepared for NASA Goddard Space Flight Center. Computer Technology
Associates, Inc., June 15, 1987.

Control Center Standard Software Final Report. Westinghouse Electric
Corporation report to NASA GSFC. July 27, 1979.

Program Design Specifications for International Sun-Earth Explorer-C. OAO
Corporation for Westinghouse Electric Corporation, specification to NASA
GSFC. April 1980. (Updated by Bendix Field Engineering Corporation for
NASA GSFC. May 1987.)

Dynamic Explorer Control Center Software Manual. Sperry Univac specification
to NASA GSFC. January 29, 1982.

Earth Radiation Budget Satellite (ERBS) Software Requirements Analysis.
Computer Sciences Corporation specification to NASA GSFC. Updated
September 30, 1983.

MSOCC Applications Executive (MAE) Software Requirements Specification.
Sperry Corporation specification to NASA GSFC. November, 1985.

Cosmic Back{round Explorer (COBE) Payload Operations Control Center
(POCC) Applications Processor (AP) System Requirements Specification. BFEC
specification to NASA GSFC. October 1986.

Gamma Ray Observatory (GRO) Payload Operations Control Center (POCC)
Applications Processor (AP) Software Requirements Specification. Sperry
Corporation specification for BFEC report to NASA GSFC. February, 1988.

Domain Analysis for Control Center Software. CTA INCORPORATED for
Computer Sciences Corporation, report to NASA GSFC. September 2, 1988.



[14] Ada Streams Package Users Manual. CTA INCORPORATED report to Naval
Oceans Systems Center. April 30, 1988.



